Hybrid Roll

An Innovative CPM-9V® Solution

XT Mill Rolls North America International Material Technology Co., Ltd.

Comparison of Hybrid Roll with Composite Roll

Powder Metallurgy Process

The shapes of materials by Canning H.I.P

H.P. (Hot Isostatic Pressing)

HIP?

熱間等方圧加圧法(Hot Isostatic Pressing、以下 HIP と略す)は、 アルゴンなどのガスを圧力媒体と し、通常 100MPa (1020kgf/cm²) 以上の圧力と 1000℃以上の温度 との相乗効果を利用して加圧処理 する技術です。

HIP は、高い等方圧力(あらゆる 方向から均等に加わる圧力)と高 温の相乗効果を利用する原理的に すぐれた方法で、従来不可能とさ れていた鋳物の巣の除去など種々 の技術問題の解決が可能です。

▲HIP 概念図 Schematic view of HIP

Press Proper Type	Press frame type Multiple steel plate yoke type		
Maximum working pressure	118MPa(17,155Psi)		
Loading style	Bottom loading		
Furnace Type	Graphite, three zone		
Maximum working Temperature	1500 ℃		
Process gas	Argon		
Furnace size	Ф600mm × 1,300mm		
Product / Product basket (Crucible) size	Ф550mm × 1,300mm		

Hot Isostatic Pressing is a method by which a workpiece is processed under the simultaneous application of high-pressure gas and high temperature.

HIP can solve many technical which problems were impossible to solve by conventional processes. One example is the elimination of casting defects.

H.I.P.

SH3 Sleeve

Example of Hipped Products

Hybrid Roll

TITAMAX[®] SH3 (CPM-9V Equivalent)

- Extremely high wear resistance compared to tool steel
- Longer life : 3~5 times longer than tool steel.
- Extremely high toughness and ductility due to controlled microstructure

Factor	TITAMAX®SH3	NCI	тс
Hardness(HRC)	49~62	37~58	75~80
Density(g/cm ³)	8.2	7.2~7.5	12.8~14.4
Life(times)	6 ~7	1	7~8
Cost(times)	0.4~0.6	-	1

Microstructure

SH3 is Powder Metallurgy Alloy Steel made by our Powder Metallurgy Process (Canning HIP). It provides superior wear rersistence while maintaining toughness and fabrication characteristics comparable to Rolling Steel such as D2, M2.

SH3 Mill Roll is superior to general rolling and casting steels in improving wear resistance for above products. Presently, It is widely used in domestic and overseas markets.

Comparison Of Carbide Structures

Wear Resistance and Toughness

Tool Steel Comparagraph

Heat Check Resistance

Heat Check Resistance (Warm Work Applications)						
Grade	Hardness HRC Number of Cyc					
D2	50	3,000				
10V	51	5,000				
9V	48	15,000				
H13	48	20,000				
H19	50	60,000				

*One cycle consists of immersing the test specimen in 1250°F molten lead for 4 sec., cooling in 180°F water for 2 sec. followed by 8 sec. of air cooling

Heat Treat Response

Heat Treat Response

Hardness HRC									
Austenitizing Temperature									
Tempering	1875°F	1900°F	900°F 1950°F 2050°F		2100°F	2150°F			
Temperature	(1025°C)	(1040°C)	(1065°C)	(1120°C)	(1150°C)	(1175°C)			
As Quenched	53	54	56	58	59	61			
1000°F (540°C)	52	53	54	56	57	58			
Optimu	m for Maxii	mum Tough	ness and Ef	fective Stres	ss Relieving				
1025°F (550°C)	51	52	53	55	56	57			
1050°F (565°C)	50	51	52	53	55	56			
1100°F (595°C)	46	47	49	51	52	53			
1150°F(620°C)	39	40	43	46	48	49			
1200°F(650°C)	33	34	37	40	42	43			

Results may vary with hardening method and section size. Salt or oil quenching will give maximum response. Vacuum or atmosphere cooling may result in up to 1-2 HRC points lower.

Minimum Time at Aust. Temp.	60min.	45min.	30min.	20min.	15min.	10min.
Minimum Number of Tempers	2	2	2	2	3	3

Hardness Profile

Toughness

Toughness

Depending on the hardness requirement, lowering the hardening temperature (underhardening) increases toughness.

Hardening Temperature	Tempering Temperature	Hardness	Charpy C-Notch		Bend Fracture Strength	
		HRC	Ft-lb (J)		ksi	(MPa)
2150°F(1175°C)	1025°F(550°C)	57	26	35	606	4177
2100°F(1150°C)	1025°F(550°C)	56	36	48	-	-
2050°F(1120°C)	1000°F(540°C)	56	47	63	600	4136
1950°F(1065°C)	1100°F(595°C)	49	74	99	-	-

Note: Properties show throughout this data sheet are typical values. Normal variations in chemistry, size and heat treat conditions may cause deviations from these values. For additional data or metallurgical engineering assistance, consult your local Crucible Service Center.

Quality Control System / Material

Performance Comparison

Material	Customer	ltem Stand	Original Dia. (in MM)	Scrap Dia. (in MM)	Regrinding (times)	Production (avg.ton/caliber)	Total Production (ton)	Life (times)			
SH3	Sambo Stool	Angle	400	350	13	1,700	22,100	6.1			
DCI	Samino Steer	Finishing	400	350	9	400	3,600	1.0			
SH3	Daehan	D16	370	330	9	6,800	61,200	6.2			
DCI	Steel	Oval	Oval	370	330	7	1,400	9,800	1.0		
SH3	Hyundai	D10	350	310	10	4,500	45,000	7.0			
DCI	Steel	Slitting	350	310	8	800	6,400	1.0			
SH3	VK Stool	D10	440	390	22	3,300	72,600	2.9			
HSS	TK SLEEF	Slitting	Slitting	Slitting	Slitting	440	390	19	1,300	24,700	1.0
SH3	Sambo Stool	Flat Bar	367	330	15	800	12,000	0.6			
TC	Samino Steel	Finishing	367	330	17	1,200	20,400	1.0			

Performance of TITAMAX[®] SH3 (CPM-9V Equivalent)

Surface of Titamax[®] SH3 After Rolling

50x50 Angle

D16 Oval

Reference of TITAMAX® SH3 (CPM-9V Equivalent)

Reference

Material		Customer	Item	Shane	Original Dia.	Scrap Dia.
Current	Former	Customer	Stand	Shape	(in MM)	(in MM)
SH3	DCI	Samho Steel	Angle Finishing	Anggle 50x50	400	350
SH3	DCI	Daehan Steel	Deformed bar Intermediate	Oval & Square	370	330
SH3	DCI	Hyundai Steel	Deformed bar Slitting	Slitting	350	310
SH3	High Speed Steel	YK Steel	Deformed bar Slitting	Slitting	440	390
SH3	тс	Samho Steel	Flat Bar Finishing	Flat	367	330
SH3	DCI	Hwhanyoung Steel	Deformed bar Slitting	Slitting	400	350
SH3	DCI	Hyundai Steel	Angle Finishing	Anggle 65x65	460	365
SH3	High Speed Steel	Hyundai Steel	Intermediate	Oval & Square	400	365
SH3	High Speed Steel	YK Steel	Deformed bar Intermediate	Square	385	350
SH3	DCI	Korea Iron & Steel	Deformed bar Slitting	Slitting	425	375

Hybrid Roll Products in Mass Production

Product : Round Bar Detail : SCM Shaft + Titamax[®] SH3 (CPM-9V Equivalent) Product : Round Bar Detail : SCM Shaft + Titamax[®] SH3 (CPM-9V Equivalent)

Hybrid Roll Products in Mass Production

Product : 50 x 50 Angle Detail : SCM Shaft + Titamax[®] SH3 (CPM-9V Equivalent)

Advantages & Features of Hybrid Roll

Combined advantage of clad (Double Poured HSS) and composite roll.

Provide better performance than what clad roll or double cast roll does.

Provide same numbers of passes as clad or double cast roll does.

More cost efficiency - shaft can be reused.

• Lead time is dramatically shorten. Easy to repair or replacement

Capable to offer multiple grade material including CPM, HSS and tool steels

Easy to Assembly

ASSEMBLY DEMO

THANK YOU