R-FACTOR

What it means and how to use it to roll the mill

R-Factor

\square What does it stand for
\square Reduction Factor
\square It is also known as (AKA)
\square E-Factor or Elongation Factor
\square Because it is referred to as a "factor" it is unitless.
\square Meaning it can be applied equally in similar situations.

Reduction

\square When heated steel is passed between two counter revolving rolls where the incoming height is greater than the exiting height the change in Area of the two shapes is referred to as the reduction.
\square R-Factor $=$ Area in vs. Area out
\square R-Factor $=$ Ain/Aout
\square R-Factors will always be greater than 1
\square The higher the number, the greater the reduction

Elongation

\square The "reduction" in cross sectional area is directly proportional to the change in length because of the
"Constant Volume Principle"

- A 2 ton Billet yields 2 tons of product no matter the shape of the product (minus any yield lost to crops or scale)
\square This is also directly proportional to the change in speed of the bar.

R- Factor/Elongation Factor

\square Assuming the bar is rolled at constant volume.
\square R-Factor represents the amount of change:

- In the bars cross-sectional area
- It's change in length
- And the change in bar speed.

Ratio 3:2
R-factor $=1.5$

Working Diameter

\square The working diameter of the roll is the diameter that that represents the speed of the bar
\square The working diameter is calculated using the roll diameter and the Groove factor (G-Corr)
\square Roll Dia. - G-Factor = W-Dia
\square Groove Factor is an empirical formula that uses pass area, bar width and roll gap
\square G-fact $=$ Area/width-gap

Scheduled R- Factors

\square Scheduled R-Factors are a blend of theoretical values and historically consistent rolling's.
\square Variations from schedule have a variety of interpretations
\square Bar size at the stand in question is wrong
\square Bar size preceding the stand in question is wrong
\square Speed mismatch

- Tension or Compression
\square Interstand looper settings are incorrect

Out of Range Remediation (Bar size)

\square R-Factor out of range due to size
\square R-Factor too high - bar is too small
\square R-Factor too low - bar is too large
\square R-Factor out of range due to bar $_{\text {in }}$ (gazinta) size discrepancy
\square R-Factor too high - bar ${ }_{\text {in }}$ is too large
\square R-Factor too low - bar in is too small

Out of Range Remediation
 (Speed)

\square R-Factor out of range due to speed
\square R-Factor too high - stands are considered "tight" Speed the mill up in back
\square R-Factor too low - stands are considered "soft" Slow the mill down in back

Other Indications of R-Factor fails

\square Groove Factor
\square Roll Diameter
\square Gear ratio
\square Schedule is wrong

Tension Control

Rougher

\square The mill is not rolling or between bars:
\square A new bar arrives and bites at stand 1 , the current taken by the motor is now being measured and averaged until just before the bar strikes stand 2.
\square This is the measured period.

Tension Control

- The bar now bites at stand 2 and the current of stand 1 is monitored, any change in load pattern is acted upon through the speed control system.
- If the current shows a decrease then tension is evident
- The speed of stand 1 is increased.
- So, an increase in current of stand 1 (at this exact time) indicates compression
- The speed of stand 1 is decreased.

Scale Break

\square The Scale Break is the part of the bar that does not touch the sides of the pass.
\square The appearance is rough and scaly
\square If the mill is in tension the scale break
\square Gets wider
\square If the mill is in compression the scale break
\square Gets smaller

Loop Profiles

HOW DOES A CONTINUOUS MILL WORK?

MILL CONSTANT IS BASED ON THE VOLUME CONSERVATION PRINCIPLE

MEASURED IN CUBIC INCHES PER SECOND
FORMULA : AREA \times SPEED $=$ THE MILL CONSTANT ($\mathrm{in}^{3} / \mathrm{sec}$)
AREA $=$ PASS AREA $\left(\right.$ in $\left.^{2}\right)$
SPEED $=$ WORKING DIA $\times \mathrm{Pi} \times$ ROLL RPM $/ 60$ (in $/ \mathrm{sec}$) $\mathrm{Pi}=3.1412$

MILL CONSTANT

\square Volume $_{\text {entry }}=$ Area $_{\text {entry }} \times$ Speed $_{\text {entry }}=$ Area $_{\text {exit }} \times$ Speed $_{\text {exit }}=$ Volume $_{\text {exit }}$

- Take 13 mm for an example. Nominal Area is $.199 \mathrm{in}^{2}, 5 \%$ light is $.189 \mathrm{in}^{2}$
- Shrink factor for steel is 6.5×10^{-6} per inch per degree Fahrenheit. Delta \dagger is $1830^{\circ}(1900-70)$. This works out to 1.012 , or $.012^{\prime \prime}$ shrink per inch.
- The hot area is $.191 \mathrm{in}^{2}$. We are finishing at 2264 FPM or $452.8 \mathrm{inch} / \mathrm{sec}$.
- The volume in $\mathrm{in}^{3} / \mathrm{sec}$ is: $.191 \times 452.8=86.62 \mathrm{in}^{3} / \mathrm{sec}$. This is the hot volume going through each stand.
- How does this translate into TPH?
- A $1 \mathrm{in}^{3}$ piece of steel weighs $.277 \#$ (hot).
- $86.62 \times .277 \times 3600 / 2000=43.19$ full groove TPH.

MILL CONSTANT

\square Working Diameter $=$ Roll diameter - Groove Factor
\square Groove factor = pass area / bar width - roll gap

GROOVE FACTOR (GF) FOR FINISHER
$\mathrm{GF}=0.191 \mathrm{in}^{2} / 0.504-.093=0.286$

GROOVE FACTOR (GF) FOR LEADER
$\mathrm{GF}=0.264 \mathrm{in}^{2} / 0.708-0.091=0.282$

LEADER
Roll dia = 13.400"

FINISHER
Roll dia $=13.40{ }^{\prime \prime}$

CALCULATE ROLL RPM FOR THE FINISHER AND LEADER FOR 13mm Rebar

CALCULATE ROLL RPM FOR THE FINISHER FOR 13 mm Rebar

WE SAID THAT VOLUME = AREA * SPEED
IF WE DEFINE SPEED IN THIS EQUATION WE REWRITE :
VOLUME $\frac{\mathrm{in}^{3}}{\mathrm{sec}}=$ AREAin $^{2} *($ ROLL DIAMETER in $-G F$ in $) * \pi * R O L L R P M / 60 \frac{\mathrm{sec}}{\mathrm{min}}$ EXTRAPOLATE 'ROLL RPM'

ROLL RPM $=\frac{\text { VOLUME in }^{3} * 60 \mathrm{sec}}{\text { AREAin }^{2} *(\text { ROLL DIAMETER in }-G F \text { in }) * \pi}$
$R O L L$ RPM $=\frac{86.62 * 60}{0.191 *(13.400-0.268) * \pi}$
$R O L L R P M=659.6$

CALCULATE ROLL RPM FOR THE LEADER FOR 13 mm Rebar

NOW CALCULATE THE ROLL RPM FOR THE LEADER
IF WE DEFINE SPEED IN THIS EQUATION WE REWRITE :
 EXTRAPOLATE 'ROLL RPM'
ROLL RPM $=\frac{\text { VOLUME in }^{3} * 60 \mathrm{sec}}{\text { AREAin }^{2} *(\text { ROLL DIAMETER in }-G F \text { in }) * \pi}$
$R O L L$ RPM $=\frac{86.62 * 60}{0.264 *(13.400-0.282) * \pi}$

ROLL RPM $=477.7$

GEAR RATIO \& MOTOR SPEED

\square Roll RPM * Gear Ratio = Motor RPM

- (motor RPM/Roll RPM = Gear Ratio)
- For Stand 16V Gear ratios are 2.2 and 4
- Motor RPM Stand 16V 1000min/2000max
- 659.6 * $4.0=2638$ (too high)
-659.6 * $2.2=1451$
- For Stand 15H gear ratio is 3.3
- 477.7 * 3.3 = 1062

Expectations for Running on Schedule

\square Consistency of operations
\square Faster more repeatable start ups
\square Better quality product

