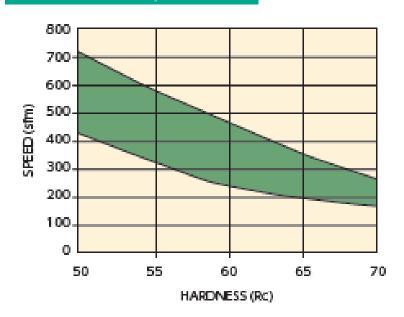


NEW ROLLS NEED NEW PROCESSES


May, 2019

Cutting Tools are "NOT" a Commodity

- At NTK we feel we are a "Service Business" and not a "Supplier.
- You pay for our service by buying our products.
- If you are not demanding our service, or another supplier, you are spending your resources with out receiving full value.
- When you buy a new piece of equipment do you expect the company you bought it from to show you how to use it to it's best ability?
- You should have tooling that works for you and how you like to do a job.

Many Grades for many reasons

Recommended Speed Chart

Insert Materials, Characteristics, and Applications

Ceramic Series

				Physical P				
	Grade / Coating	Density			Thermal Conductivity	Applications		
		g/ail	HRA	MPa	GPa	X10-4/K	W/m·K	
	HC2	4.3	94.5	800	420	7.9	21	General purpose grade; cost effective Semi- finishing to finishing of cast iron mill rolls Machining of hardened materials
based	HC5	4.3	95.0	900	420	7.8	25	Roughing to finishing cast iron and steel mill rolls. Turning of hardened steels up to 62Rc.
a + TiCb	HC7	4.6	95.0	1100	420	7.9	23	Turning of hardened steels in the 50-62Rc range. (demanding applications) Semi-finishing and finishing of cast iron
Alumina	ZC7 TIN	4.6	95.0	1100	420	7.9	23	Machining hardened materials even in soft to hard turning applications (50-62Rc) Semi-finishing and finishing cast iron; chilled iron
	ZC4 TIN	4.6	95.5	1000	420	7.8	25	Finish machining of hardened materials (62-70Rc)
SIALON	SX9	3.3	93.5	1200	330	3.0	15	Semi finishing cast iron and ductile rolls
Whister (Aloufsic)	WA1	3.7	94.5	1200	400	7.0	35	Roughing to Semi-finishing of carbide mill rolls. Roughing of hardened rolls.(45-62Rc) Semi finishing to finishing of cast iron

CBN

	Grade	Style	Main Binder	CBN Volume	Coating	Applications
SN on Nitride)	B99	Solld	AIN	93%	ı	High speed cast iron and mill roll machining
CBP (QubcBror	B30	Brazed	П	95%	ı	Semi-finishing of carbide mill rolls. Semi-finishing to finishing of cast iron.

Grade Wheel

Solutions for Hard Material and Mill Roll Machining with Ceramics

Alumina + TiC Ceramics

- High-hot hardness and low plasticity
- Toughness & hardness

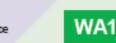
ZC7

Excellent wear resistance

applications (50-62RC)

Machining soft to hard turning

Semi-finish and finish cast irons



■ Features

- Balance of abrasion and fracture resistance
- Semi finishing and finishing cast iron and hardened steels

Work Materials

Steels • Cast rolls • Ductile rolls

ZC4

■ Features

- TIN coated premium finest grain ceramic
- Excellent wear resistance
- Best for hard turning applications from 50-70Rc
- Superior finish turning

■ Work Materials

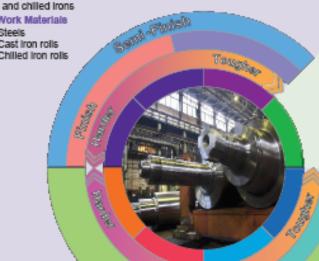
Steels • Gray cast Iron rolls

■ Features

- Excellent wear resistance
- Turning of hardened steels (35-62Rc)
- Wide range of machining even through interruptions
- Milling hardened steels (45-62Rc)

Work Materials

- Ductile iron rolls
- Chilled Iron rolls
- Steels



Steels

■ Features

TIN coating

- Cast Iron rolls
- Chilled iron rolls

■ Features

- Flank wear resistance and notching resistance
- Machines through hard spots (even embedded) Insert pieces)
- Milling of hardened materials (45-65Rc)

Work Materials

- Carbide rolls
 Cast Iron rolls
- Steels

Whisker - Versatile Player

Productivity and reliability

SiAlON Ceramic

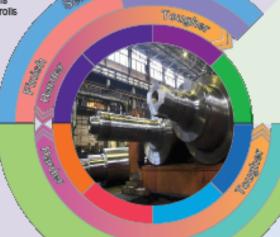
Toughness and wear resistance.

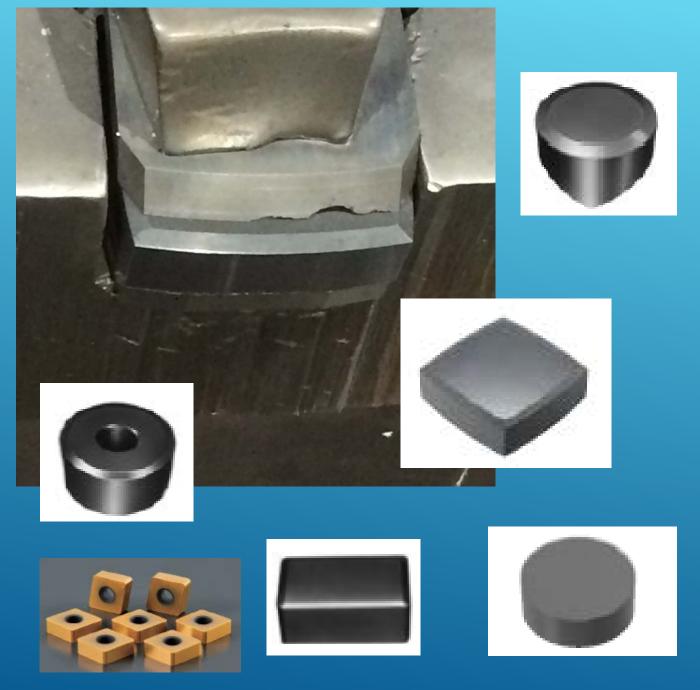
SX9

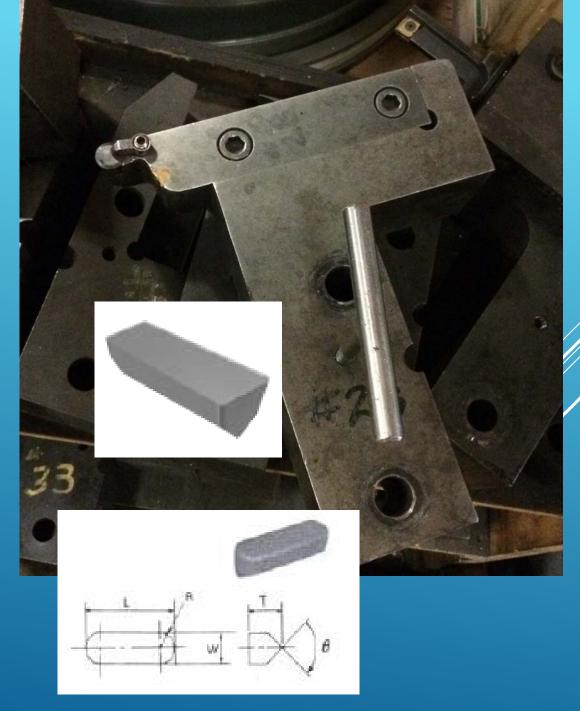
HC5

- Excellent toughness and wear resistance
- Semi finishing of cast and hardened steels (35-62Rc)
- Machine through scale and interruptions

Work Materials


- Cast Iron rolls
 Steels
- CPM rolls (Hitachi rolls)


■ Features


- Excellent toughness and notch wear resistance
- Semi-finishing of cast and ductile rolls
- Turning and milling applications
- Machine hard materials (35-46Rc)

■ Work Materials

- Cast Iron rolls
- Ductile iron rolls

Many options - Many reasons

RCGX									: 1st Choi	on +12	nd choice
	Τ.	Steel									
	Stainless Steel			M							
	√	Cast Iron		K	•	•	•	•	•	•	•
(;) +	X)ø	Non-Ferrou		N							
	<u>_</u> ∆Y	Heat Resid		S					•	•	
<u>'</u>	7"	Hardened	Material	Н	•	•	•	•	•		•
								mics			CBN
Item Number	ISO Item Number	IC.	т	θ		Alumin	a - TiC		Whistor	SIALON	CBIN
				1	HC2	HC5	HC7	ZC4	WA1	SX9	B30
RCGX 101 P2010		3/16	.240	90	•						
RCGX 102 P4815		1/4	.309	120	•	•	•				•
RCGX 102 T0225		1/4	.309	120	_		_			•	
RCGX 102 T0820		1/4	.309	120	•			l			
RCGX 103 P4815		3/8	.309	120	•	•	•				•
RCGX 103 P8015		3/8	.309	120	_	•	•				
RCGX 103 T0820		3/8	.309	120	•						
RCGX 103 T0825		3/8	.309	120	-			•			
RCGX 103 T1625		3/8	.309	120				•			
RCGX 104 P4815		1/2	.312	120							•
RCGX 104 P6015		1/2	.312	120	•	•	•				
RCGX 104 P8015		1/2	.312	120	_	•	•				
RCGX 104 T0820		1/2	.312	120	•	-	_				
RCGX 104 T1625		1/2	.312	120	-			•			
RCGX 45 E02	RCGX 120700 E004	1/2	5/16	120					•		
RCGX 45 T0220	RCGX 120700 T00520	1/2	5/16	120				l	•	•	
RCGX 45 T0320	RCGX 120700 T00820	1/2	5/16	120				l	•		
RCGX 45 T0420	RCGX 120700 T01020	1/2	5/16	120				l	•	•	
RCGX 45 Z0620	RCGX 120700 201520	1/2	5/16	120				l	•		
RCGX 45 Z0820	RCGX 120700 202020	1/2	5/16	120					•		
RCGX 105 P4815		5/8	.388	120	•	•					•
RCGX 105 P8015		5/8	.388	120		•	•	l			
RCGX 105 S8020		5/8	.388	120	•		•	•			
RCGX 106 P4815		3/4	.388	120	•						•
RCGX 106 P8015		3/4	.388	120	•	•	•				
RCGX 108 P8015		1	.461	140	•						

CDH.. Inserts

CDII

CDH •: 1st Choice •: 2nd choice											
			Steel		P						
	<u>-</u>		Stainles	ss Steel	M						
			Cast Iro	on	K	•	•	•			
(b) ubt											
Ψ Ι	-1 }6′		Heat Re	sistant Alloy	S						
			Hardene	ed Material	н	•	•	•			
						Ceramics					
Item Number	ISO Item Number	IC.	т		н	Alumina - TiC					
Territorio e	150 tell rediliber			·	"	HC2	HC5	HC7			
CDH 22 P2810	CoH 1207 P07010	1/2		1/4	.125	•	•	•			
CDH 33 P6015	CoH 1909 P15015	3/4		3/8	.250	0					
CDH 33 Q6010	CoH 1909 Q1s010	3/4		3/8	.250	•					
CDH 33 Q6010B	CoH 1909 Q150108	3/4		3/8	.250		•	•			
CDH 42 P8015	CoH 2512 P20015	1		1/2	.266			•			
CDH 42 P12010	CDH 2512 P30010G	1		1/2	.266	•	•				
CDH 43 P6010	CDH 2519 P15015	1		3/4	.266	•					
CDH 515 P7110B	CDH 3209 P180108	1-1/4	1	3/8	.391	•					
CDH 515 P7110	CDH 3209 P18010	1-1/4	ı	3/8	.391	•					
CDH 515 P8015	CDH 3209 P20015	1-1/4	ı	3/8	.391			•			
CDH 515 Q7110	CDH 3209 Q18010	1-1/4	1	3/8	.391	•	•	•			

LNJ/LNM

CDH 53 P8015

: 1st Choice : 2nd choice Stainless Steel M Cast Iron Non-Ferrous Material Heat Resistant Alloy Hardened Material Ceramics ISO Item Number Alumina - TiC Item Number w WA1 HC2 HC5 HC7 SX9 LNJ 6688 P6015 LNJ 6688 Q8015 UNJ 6688 P15015 .125 1-1/2 1/2 3/4 1/2 LNJ 6688 Q20015 .1251-1/2LNM 6688 56015 .125 1-1/2 1/2 LNM 6688 SN2 LNM 6688 P6015 LNM 6688 PN .125 3/41-1/2 1/2 LNM 6688 SNX2 .125 3/41/2 1-1/2 LNM 6688 SNX2 LNM 6688 SNX6 LNM 6688 SNX6 .125 3/41-1/2 1/2

CDH 3219 P20015

TT 1130

21 1130						●:1st Ci	roice • : 2nd choice		
•	.T.	Ste	el	P					
	М	Sta	Inless Steel	M					
THE THE			t Iron	K	•	•	•		
IC 1	1	Nor	-Ferrous Material	N					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			S					
R		Har	dened Material	н	•	•	•		
					Ceramics				
Item Number	ISO Item Number	IC	т	R	Alumina - TiC				
					HC2	HC5	HC7		
ZT 1130 PNX5		1-1/2	1/2	4-1/2	•	•	•		

Rebar

Dedicated Tooling #3, #4, #5, #6 Rebar

RCGX10

(inch)	k	Т	θ	(inch)	k	Т	θ
RCGX 101	3/16	.240	90	RCGX 105	5/8	388	120
RCGX 102	1/4	309	120	RCGX 106	3/4	388	120
RCGX 103	3/8	309	120	RCGX 108	1	461	140
Porsy 104	1/2	310	120				

Holders → F18 • F19

											=								
	Ste	et		P															
<u> </u>	Sta	iinLess Ste	et	M															
	. Cas	st hon		K					•	•	•		•	•	•	•			
	.V/a Nor	nFerrous /	ValeriaL	N															
	AV 140-	at Resistan	volle te	S															
1 7	7° Hardened A			Н			•												
	T NA	1	NO VOL	- 11									no ioo	_			•		•
					BEERMES					-6		_	mics						
Item Number	ISO Item Nu	mber	ю	l R !		- 5	iAlO		Villation			Awn	_	_		u min			
					8	8	8	8	WAI	88	899	5	нwз	4C6	£22	HG5	5	ZCZ	ZC4
					3	W	W	W	3	W	5	Ť	Ŧ	Ì	Ť	Ť	Ť	Ñ	Ň
RCGX 101 P2010			3/16												•				
RCGX 102 P4815			1/4												•	•	•		
RCGX 102 T0 225			1/4				•	•											
RCGX 102 T0820			1/4																
RCGX 103 P4815			3/8												•	•			
RCGX 103 P6015			3/8			ĺ		ĺ		li		li					•	İ	ĺ
RCGX 103 T0820			3/8												•				
RCGX 103 T0825			3/8																•
RCGX 103 T1625			3/8																•
RCGX 104 P6015			1/2												•	•	•		
RCGX 104 P6015			1/2			ĺ		İ		li		l i			İ	İ	•	İ	ĺ
RCGX 104 T0820			1/2												•				
RCGX 104 T1625			1/2																
RCGX 105 P4615			5/8												•	•			
RCGX 105 P8015			5/8														•		
RCGX 105 58020			5/8					Ĺ							•		•	İ	
RCGX 106 P4815			3/4												•			Г	
RCGX 106 P8015			3/4												•	•	•		
RCGX 108 P8015			1												•				

Rebar Size Corresponds to I.C size

			U.S	. rebar size	chart			
Impe			Linear Mass Density Nominal				Nomi	nal area
bar	size	Metric size	lb/ft	(kg/m)	(in)	(mm)	(in²)	(mm²)
#2	#	6	0.167	0.249	0.250 = 1/4	6.35	0.05	32
#3	#	10	0.376	0.561	0.375 = 3/8	9.525	0.11	71
#4	#	113	0.668	0.996	$0.500 = \frac{1}{2}$	12.7	0.20	120
#5	#	16	1.043	1.556	0.625 = 1/8	15.875	0.31	200
#6	#	19	1.502	2.24	$0.750 = \frac{3}{4}$	19.05	0 44	204
#7	#	22	2.044	3.049	0.875 = 1/8	22.225	0.60	387
#8	#	25	2.670	3.982	1.000	25.4	0.79	509
#9	#	29	3.400	5.071	1.128	28.65	1.00	645
#10	#	32	4.303	6.418	1.270	32.26	1.27	819
#11	#	36	5.313	7.924	1.410	35.81	1.56	1006
#14	#	43	7.650	11.41	1.693	43	2.25	1452
#18	#	±57	13.60	20.284	2.257	57.3	4.00	2581
#18J	J		14.60	21.775	2.337	59.4	4.29	2678

Tricks

ZT1130

- 1. Chips can be long and get tangled in chip flume. Increase feed and or depth of cut and it will make chips more brittle.
- 2. Typical cutting path is tail stock to chuck. You can utilize the other side of the insert if you reverse cutting path (from chuck to tail stock).
- 3. Slightly cocking insert will give you a large radius and will stabilize sloppy machines.

CDH

- 1. Using very large edge prep through scale (refurbished rolls) in HC5 in depths up to .100.
- 2. CDH515 can be upgraded to CDH53 in holder by switching shim seat.
- 3. The larger the radius the better tool life due to chip thinning.

RCGX

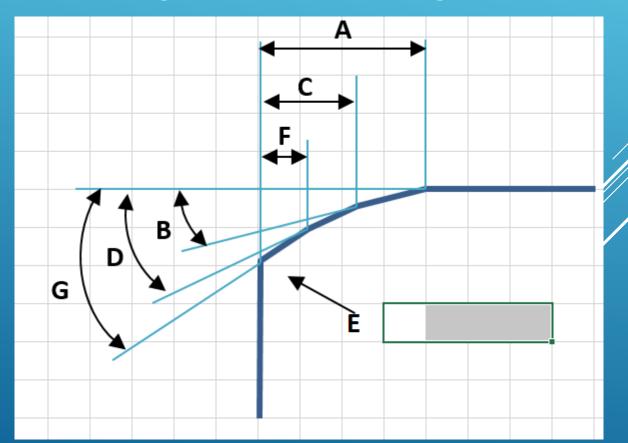
- 1. You can get 4 edges out of this insert by rotating the shim seat 90 deg.
- 2. If cutting while pulling away from centerline it is suggested to turn the shim seat 90 deg.
- 3. When contouring at the bottom of large groove reduce feed rate at transition to keep insert from breaking.

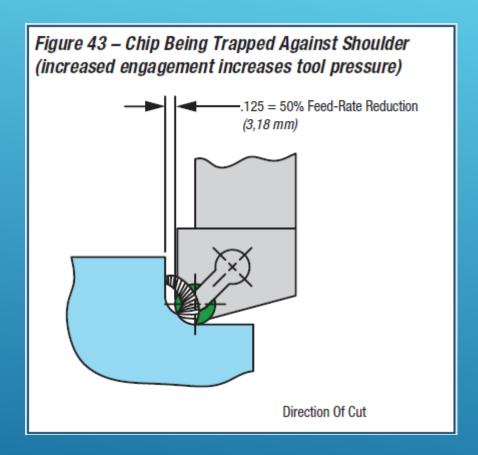
VGW

- 1. When doing rail rolls typical grooves have large radius on both sides of the groove. Most operators finish these with groovers. Use the largest radius possible on insert to limit breaking off the corners.
- 2. VGW is great replacement for VDB style groovers. Due to deep grooves the back side of VDBs must be ground off so they do not rub at bottom of the groove.

80 and 55 deg. Diamonds

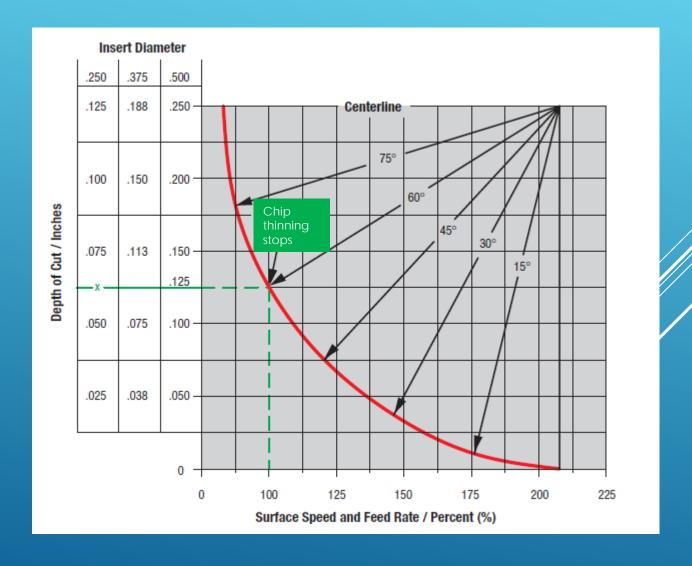
- 1. Extremely weak tool for this industry. Tool path is extremely important.
- 2. Confirm roll material and hardness. These inserts operating parameters are very finite.

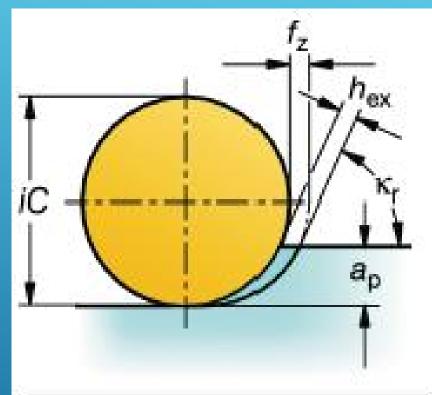

Operator


1. Since it is difficult to get exact tool life and performance the operators opinion is always the decision maker.

These 2 edge preps for the CDH515 In HC5 have been able to handle really heavy scale.

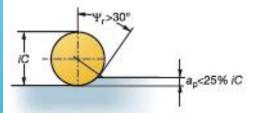
PNX5 = A = .0945 B = 15 deg. C = .008 D = 30 deg. E = .0015 hone


Q7110 = A = .0709 B = 10 deg. C = .008 D = 25 deg. F = .003 G = 40 deg.

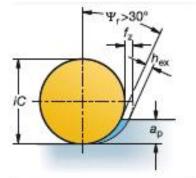


Insert Engagement

Chip Thinning



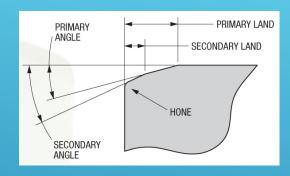
The Physics



$$f_{z} = \frac{h_{\text{ex}} \times iC}{2 \times \sqrt{a_{\text{p}} \times iC - a_{\text{p}}^{2}}}$$

2. Round and radius insert cutters

$$costc_r = \frac{(0.5 iC - a_p)}{0.5 iC}$$

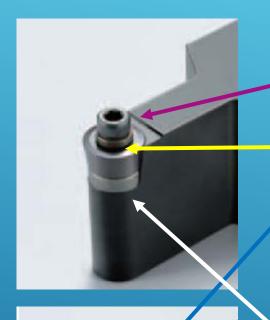


$$f_{z} = \frac{h_{\text{ex}} \times iC}{2 \times \sqrt{a_{\text{p}} \times iC - a_{\text{p}}^{2}}}$$

- Best performance is achieved when the lead angle, ψ_r, remains over 30° when using round insert cutters or ball nose end mills at limited depths of cut. This means that the depth of cut should not exceed 25% x insert diameter, iC.
- For larger depths of cut, it is better to use square inserts with a constant ψ_r of 45°.
- The chip thickness, hex, varies with round inserts, and depends on the lead angle. With low apliC ratios, the feed can be increased considerably in order to raise the chip thickness to a desired level.
- Round inserts have a higher maximum chip thickness capability than straight edge solutions, due to the stronger insert shape and longer cutting length.

Insert Markings Specialty edges

Style	Symbol
Double Chamfer with A hone	P
Double Chamfer with B hone	Q
Double Chamfer without hone	K



Primary Land Length & Angle	Inch	Metric
.028" X 15 deg.	2815	07015
.060" X 15 deg.	6015	15015
.079" X 15 deg.	7915	20015
.091" X 15 deg.	9115	23015

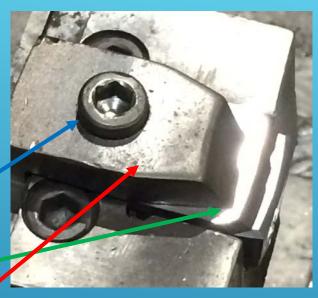
Example:

Old Designation	New Designation							
Old Designation	Inch	Metric						
CDH515C2.0X15SA HC7	P7915	P20015						
LNJ6688C1.5X15SA HC7	P5915	P15015						
RCGX105C2.0X20A HC2	S8020	K20020						
ZT1130C2.3X20SA HC2	P7920	P7920						

Factors: Tool holders

1. Insert Screw

2. Washer


3. Clamp

screw

5. Shim

6. Clamp

TOOL HOLDERS – DO'S & DON'TS

- 1. Use Proper tool and quality tool.
- 2. Never take a file to the holder or shim seat.
- 3. Hardware is cheap. Tool holders are expensive.
- 4. Send Damaged tool holders out for repair.
- 5. Clean the pocket thoroughly. (not just air blast)
- 6. Never over torque screws. Both shim seat screws and top clamps only requite 15 in/lbs to secure insert.

SECURE VS. CAUSING DAMAGE

- 1. Over torqueing will damage holder pocket.
- 2. Inserts and seats are 5X's harder than the body.
- 3. The over torqueing will move and compress the pocket changing insert alignment for improper support.
- 4. Pocket Tolerance 0.004" Insert tolerance 0.004"
- 5. Remember Inserts have very high compressive strength and very little transferred ruptured strength.
 - ▶ Pre-cooked Pasta or mechanical pencil lead!!!!

THANK YOU FOR YOUR INVITATION.