THE UNIVERSITY

MADISON

Capstone/Senior Design University Partnerships

Presented by:

CHARTER STEEL Ted Fitzpatrick (Charter Steel Saukville Processing) Dr. Benjamin Church (University of Wisconsin-Milwaukee)

ZANDU

One Family. One Team.

Agenda

- What is a Capstone/Senior Design Project?
 Video
- How did Charter Get involved?
- Examples of Projects and Results
 - Compression Testing
 - Anneal Cycle Optimization
 - Recruitment Aspect
- University Perspective
- Q&A
 - Questions are welcome throughout, please raise your hand!

What is a Capstone/Senior Design Project?

How did Charter Steel get involved?

CHARTER STEEL

Compression Testing Overview (R&D Advantage)

One Family. One Team.

Problem Statement

"There are limitations to tensile and reduction-of-area characterization of materials to be used in compression. Charter Steel would like to develop a test that will provide a quick and efficient means to characterize material through compressive measures."

Experimental Work

Compressive Failures

- An ASTM standard exists for compression testing
 - Lengthy process due to low strain rate
 - Selective and meticulous sample preparation

Fig 2. Different modes of failure under compression. a) Buckling, (b) shearing, (c) double barreling, (d) barreling, (e) homogenous compression, (f) compressive instability.

Experimental Work (cont.)

Compression Slugs

ONECHARTER

Area-Under-the-Curve

Specimen 6 to 10

Tensile ANOVA

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Process Path	3	200.11	66.7026	300.30	0.000
Error	92	20.43	0.2221		
Total	95	220.54			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.471294	90.73%	90.43%	89.91%

Means

Process Path	N	Mean	StDev	95% CI
1	24	72.3778	0.3271	(72.1868, 72.5689)
2	24	73.290	0.537	(73.099, 73.481)
3	24	69.456	0.594	(69.265, 69.647)
4	24	72.3571	0.3748	(72.1661, 72.5482)

Pooled StDev = 0.471294

Reduction of Area ANOVA

The pooled standard deviation is used to calculate the intervals.

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Process Path	3	48.89	16.2953	18.23	0.000
Error	92	82.24	0.8939		
Total	95	131.12			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.945443	37.28%	35.24%	31.71%

Means

Process Path	N	Mean	StDev	95% CI
1	24	72.948	0.742	(72.565, 73.331)
ן ר	24	73.929	0.750	(73.546, 74.312)
2	24	72.564	1.458	(72.180, 72.947)
3 4	24	74.328	0.581	(73.944, 74.711)
- T				

Pooled StDev = 0.945443

Compression ANOVA

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Process Path	3	688.4	229.457	205.48	0.000
Error	257	287.0	1.117		
Total	260	975.4			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.05673	70.58%	70.23%	69.64%

Means

Process Path	N	Mean	StDev	95% CI
1	61	118.151	1.098	(117.885, 118.417)
2	67	120.154	0.983	(119.899, 120.408)
3	63	115.608	1.364	(115.345, 115.870)
4	70	118.568	0.717	(118.319, 118.816)

Pooled StDev = 1.05673

Anneal Cycle Optimization

Cycle Times

Heat Treatment

- Experimental trials
 - Decrease furnace temperature
 - Decrease furnace times
 - Intermediate Step

Figure 10: Heat treatment trials T2-T14.

Microscopy Transverse cross section All micros were taken at mid radius Etched with 4% Picral Figure 16: Depiction of Image Location

• Requirement: 80%

- Reduce in time
- Reduce temperature
- Combine reduction in time with temperature cautiously

Trial	Rating	Benefit		
T1	80%			
T2	85%			
тз	85%	De de se time		
T4	80%	Reduce time		
T5	85%			
T6	60%			
Τ7	60%	Reduce		
Т8	20%	temperature		
Т9	30%			
T10	30%	Reduce time at the		
T11	40%	temperature		
T12	60%			
T13	20%	Understand time		
T14	40%	Understand temp		
Table 3: Trials with respective ratings from Charter Steel				

Results

- Production Efficiency
- Reduced Natural Gas Consumption
 - Reduced Wear and Tear

Cost Savings: ~\$43,000 in first year

Recruitment Aspect

- Senior design "capstone" project:
- One or two semesters,
- 1-4 students
- Part of a class (taken for credit).

Pros and Cons

Benefits	Challenges
Technical input to drive project trajectories	Scoping projects
Early and deep look at potential recruits	IP (keep IP out!)
Leveraging University resources (instruments, faculty, staff)	Commitment of personnel time/effort

Instrument Capabilities

POWERFUL IDEAS **PROVEN RESULTS**

What is needed for a project:

- Project idea / scope
- Technical advisor from your company able to work with students (one hour per week, tour, end-of-semester presentations)
- Program fee (variable by school / program)
- Access to relevant company-specific resources (samples, advice, know-how)

Project Topics

<u>Do's</u>

- Focuses on student learning
- Utilizes concepts from multiple courses in their undergrad curriculum
- Exposure to an industrial application/process/product
- Value-Add to you, achievable in the course timeframe
- Open-ended, challenging
- Provides space for the students to take ownership

<u>Do Not's</u>

- A "To Do" list
- Related to an urgent production issue
- Sensitive to IP
- Uses equipment / instruments that are highly complex or difficult to access

- Local university (or university of interest)
 - ✓ Department of interest
 - ✓ Department Chair (email or cold-call)
- Best time to contact is ~April. Projects are often gathered in late spring or summer
- Be up-front with faculty about why you are interested, what you want to get out of the partnership